organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*R**)-(–)-3-[4-(Benzyloxy)benzovlmethyl] 5-ethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxvlate

Xiao-Yun Wu,^a Ai-Xi Hu^b* and Gao Cao^c

^aSchool of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China, and ^cSchool of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China Correspondence e-mail: axhu0731@vahoo.com.cn

Received 23 October 2007; accepted 31 October 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.009 Å; R factor = 0.045; wR factor = 0.144; data-to-parameter ratio = 7.4.

In the optically active title compound, $C_{32}H_{30}N_2O_8$, the substituted 1,4-dihydropyridine ring adopts a flattened boat conformation. The crystal structure is stabilized by intermolecular N-H···O hydrogen bonding.

Related literature

The importance of 1,4-dihydropyridine derivatives was summarized by Goldmann & Stoltefuss (1991). A series of new 1,4-dihydropyridine compounds has been designed and synthesized by us (Wu et al., 2006).

Experimental

Crystal data

$C_{32}H_{30}N_2O_8$	$\gamma = 109.296 \ (2)^{\circ}$
$M_r = 570.58$	V = 728.33 (12) Å ³
Triclinic, P1	Z = 1
a = 7.3646 (7) Å	Mo $K\alpha$ radiation
b = 8.1772 (8) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 13.329 (1) Å	T = 295 (2) K
$\alpha = 97.905 \ (2)^{\circ}$	$0.46 \times 0.28 \times 0.16 \text{ mm}$
$\beta = 100.352 \ (2)^{\circ}$	

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: none 5566 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	3 restraints
$wR(F^2) = 0.144$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
2808 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
382 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1^i$	0.86	2.11	2.940 (5)	163

2808 independent reflections 1747 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.030$

Symmetry code: (i) x + 1, y, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors express their thanks to the State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University (grant No. 200414), and to the Medical Science Scientific Research Fund of Guangdong (grant No. B2007112) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2347).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559-

1578. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wu, X.-Y., Hu, A.-X. & Xie, Y.-L. (2006). Chin. J. Org. Chem. 26, 93-98.

Acta Cryst. (2007). E63, 04578 [doi:10.1107/S1600536807054785]

(*R**)-(-)-3-[4-(Benzyloxy)benzoylmethyl] 5-ethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

X.-Y. Wu, A.-X. Hu and G. Cao

Comment

1,4-dihydropyridine derivatives have been widely investigated from the pharmacological point of view since Nifedipine was found to be highly effective calcium antagonist in 1975, and many compounds similar to Nifedipine in structure have already been widely used as therapeutic agents for the treatment of cerebra circulatory disorder, hypertension and so on (Goldmann & Stoltefuss 1991). According to the structure–activity relationship of 1,4-dihydropyridine calcium antagonists, a serials of new compounds were designed and synthesized (Wu *et al.*, 2006). The optical active title compound has been synthesized by the reaction of optical active 1,4-dihydropyridine monoester with a\-bromoalkylaryl ketone under mild conditions.

The 1,4-dihydropyridne (DHP) ring has a flattened boat conformation, N1 and C3 deviating from the mean plane by -0.185 (4) Å and -0.247 (5) Å, respectively. The dihedral angle found between plane C1/C2/C4/C5 and C2/C3/C4, C1/N1/N5 are 31.1° and 18.4°, respectively. Both the 3-nitrophenyl ring (C27–C32) and the DHP ring (N1, C1, C2, C3, C4, C5) are almost perpendicular to each other, the dihedral angle found between them is 80.8 (3)°. The phenyl rings C14/C15/C16/C17/C18/C19 and C21/C22/C23/C24/C25/C26 are almost perpendicular to each other, too, the dihedral angle found between them is 87.5 (3)°. The structure has intermolecular hydrogen bonds of the type N—H…O between the amine of one molecule and the carbonyl oxygen of neighbouring molecule.

Experimental

Cinchonidine (15 mmol) and racemic acid 1,4-dihydropyridine monoester, ethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate (15 mmol) were stirred in reflux ethanol (35 ml) until the dissolution was complete, and then kept at room temperature for 24 h. The crystals formed were collected by filtration to give Cinchonidine salt (3.1 g). The 1,4-dihydropyridine monoester was obtained by dissolving of the Cinchonidine salt and sodium hydroxide in water. The solution were acidified with HCl, filtered, washed with water to give (-)-ethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate (1.54 g, yield 31%, $[\alpha]_D^{20} = -4.4^\circ$). The absolute configuration of the enantiomer has not been assigned.

Optical active 1,4-dihydropyridine monoester (5 mmol), 2-bromo-1-(4-benzyloxyphenyl)ethan-1-one (5 mmol) and K₂CO₃ (5 mmol) in DMF (5 ml) were stirred overnight at room temperature. The mixture was extracted with ethyl acetate, washed successively with water and brine, and then dried and the solvent was removed. The residue was purified by crystallization to give target compound (yield 75%, $[\alpha]_D^{20} = -93.1^\circ$).

Crystals suitable for X-ray analysis were obtained by slow evaporation from saturated methanol solution.

Refinement

Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and torsion angles were refined, with $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in geometrically idealized positions and refined as riding model, with N—H = 0.86 A°, C—H = 0.98 (methine), 0.93 (aromatic) and 0.97 Å (methylene). The constraint $U_{iso}(H) = 1.2U_{eq}(carrier)$ was applied. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1. Molecular structure of (I) showing 30% probability displacement ellipsoids.

Fig. 2. Packing diagram.

(R*)-(-)-3-[4-(Benzyloxy)benzoylmethyl]	-ethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-di-
carboxylate	

Crystal data	
$C_{32}H_{30}N_2O_8$	Z = 1
$M_r = 570.58$	$F_{000} = 300$
Triclinic, P1	$D_{\rm x} = 1.301 {\rm ~Mg~m^{-3}}$
Hall symbol: P 1	Melting point: 122 K
a = 7.3646 (7) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 8.1772 (8) Å	Cell parameters from 1853 reflections
c = 13.329(1) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 97.905 \ (2)^{\circ}$	T = 295 (2) K
$\beta = 100.352 \ (2)^{\circ}$	Block, yellow
$\gamma = 109.296 \ (2)^{\circ}$	$0.46 \times 0.28 \times 0.16 \text{ mm}$
$V = 728.33 (12) \text{ Å}^3$	
Data collection	

Bruker SMART 1000 CCD diffractometer	1747 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.030$

Monochromator: graphite	$\theta_{\rm max} = 26.0^{\circ}$
T = 295(2) K	$\theta_{\min} = 1.6^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -10 \rightarrow 10$
5566 measured reflections	$l = -16 \rightarrow 16$
2808 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_0^2) + (0.0853P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.144$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
2808 reflections	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
382 parameters	Extinction correction: none
3 restraints	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	

Special details

Experimental. ¹H NMR (CDCl₃, 400 MHz) (p.p.m.): 1.22 (t, J = 7.2 Hz, 3H, CH₃), 2.39 (s, 3H, CH₃), 2.42(s, 3H, CH₃), 3.96–4.13 (m, 2H, CH₂), 5.13 (s, 2H, CH₂), 5.20 (s, 1H, DHP 4-H), 5.24, 5.29 (dd, J = 16.4 Hz, J = 16.4 Hz, 2H, CO₂CH₂CO), 5.98 (s, 1H, NH), 6.97–8.13 (m, 13H, Ar—H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.6718 (6)	0.3591 (6)	0.7572 (4)	0.0533 (11)
C2	0.5034 (6)	0.3903 (6)	0.7313 (4)	0.0513 (10)
C3	0.3081 (6)	0.2467 (6)	0.7268 (4)	0.0536 (11)
H3	0.2150	0.3049	0.7396	0.064*
C4	0.3348 (6)	0.1501 (5)	0.8135 (3)	0.0480 (10)
C5	0.5090 (6)	0.1267 (6)	0.8418 (4)	0.0556 (11)

C6	0.5611 (8)	0.0160 (8)	0.9149 (5)	0.0800 (16)
H6A	0.5869	0.0777	0.9856	0.120*
H6B	0.6771	-0.0053	0.9034	0.120*
H6C	0.4526	-0.0950	0.9023	0.120*
C7	0.8763 (7)	0.4639 (7)	0.7483 (5)	0.0768 (15)
H7A	0.8718	0.4784	0.6777	0.115*
H7B	0.9635	0.4022	0.7671	0.115*
H7C	0.9243	0.5783	0.7943	0.115*
C8	0.1677 (6)	0.0884 (5)	0.8604 (4)	0.0500 (10)
C9	0.0365 (8)	-0.0586 (8)	0.9877 (5)	0.0772 (15)
H9A	-0.0854	-0.1386	0.9389	0.093*
H9B	0.0125	0.0431	1.0207	0.093*
C10	0.1013 (11)	-0.1492 (11)	1.0668 (6)	0.111 (2)
H10A	0.1136	-0.2552	1.0329	0.167*
H10B	0.0055	-0.1795	1.1079	0.167*
H10C	0.2273	-0.0721	1.1111	0.167*
C11	0.4911 (7)	0.5559 (6)	0.7029 (4)	0.0564 (11)
C12	0.6556 (7)	0.8139 (6)	0.6503 (4)	0.0625 (13)
H12A	0.7818	0.9123	0.6706	0.075*
H12B	0.5550	0.8575	0.6674	0.075*
C13	0.6058 (6)	0.7412 (6)	0.5350 (4)	0.0586 (12)
C14	0.5909 (6)	0.8605 (6)	0.4637 (4)	0.0572 (11)
C15	0.6281 (7)	1.0397 (6)	0.4971 (4)	0.0591 (12)
H15	0.6646	1.0887	0.5683	0.071*
C16	0.6120 (7)	1.1463 (6)	0.4269 (4)	0.0618 (12)
H16	0.6336	1.2650	0.4510	0.074*
C17	0.5640(7)	1.0775 (7)	0.3213 (4)	0.0659 (13)
C18	0.5269 (10)	0.8964 (8)	0.2864 (5)	0.0866 (17)
H18	0.4928	0.8473	0.2154	0.104*
C19	0.5412 (9)	0.7935 (7)	0.3575 (4)	0.0814 (17)
H19	0.5167	0.6741	0.3336	0.098*
C20	0.5785 (11)	1.3511 (7)	0.2736 (5)	0.0891 (17)
H20A	0.7176	1.4170	0.3065	0.107*
H20B	0.5006	1.3707	0.3222	0.107*
C21	0.5186 (10)	1.4100 (7)	0.1744 (5)	0.0808 (17)
C22	0.6499 (12)	1.4713 (10)	0.1165 (6)	0.111 (2)
H22	0.7793	1.4753	0.1362	0.134*
C23	0.5874 (18)	1.5295 (11)	0.0251 (7)	0.134 (3)
H23	0.6765	1.5753	-0.0144	0.161*
C24	0.3984 (18)	1.5174 (9)	-0.0035 (7)	0.116 (3)
H24	0.3568	1.5530	-0.0640	0.140*
C25	0.2676 (13)	1.4550 (9)	0.0537 (6)	0.106 (2)
H25	0.1375	1.4486	0.0330	0.127*
C26	0.3276 (12)	1.4010 (8)	0.1424 (5)	0.0929 (19)
H26	0.2370	1.3574	0.1816	0.111*
C27	0.2206 (6)	0.1232 (7)	0.6193 (4)	0.0579 (12)
C28	0.1756 (7)	0.1925 (9)	0.5333 (4)	0.0755 (15)
H28	0.1954	0.3125	0.5424	0.091*
C29	0.1031 (8)	0.0886 (13)	0.4355 (5)	0.093 (2)

C30	0.0708 (9)	-0.0890 (15)	0.4179 (6)	0.111 (3)
H30	0.0221	-0.1584	0.3506	0.133*
C31	0.1123 (9)	-0.1625 (10)	0.5025 (6)	0.098 (2)
H31	0.0912	-0.2828	0.4921	0.117*
C32	0.1851 (7)	-0.0585 (7)	0.6024 (5)	0.0731 (14)
H32	0.2106	-0.1098	0.6588	0.088*
N1	0.6607 (5)	0.2105 (5)	0.7986 (3)	0.0565 (10)
H1	0.7535	0.1688	0.7972	0.068*
N2	0.0568 (10)	0.1652 (16)	0.3455 (6)	0.128 (3)
O1	0.0167 (4)	0.1171 (4)	0.8359 (2)	0.0587 (8)
O2	0.1918 (5)	-0.0024 (5)	0.9338 (3)	0.0745 (10)
O3	0.3392 (5)	0.5796 (4)	0.6805 (3)	0.0800 (11)
O4	0.6662 (4)	0.6790 (4)	0.7062 (3)	0.0647 (9)
O5	0.5795 (7)	0.5867 (5)	0.5045 (3)	0.0899 (12)
O6	0.5427 (6)	1.1658 (5)	0.2441 (3)	0.0836 (11)
O7	0.0752 (11)	0.3189 (14)	0.3632 (6)	0.162 (3)
08	0.0010 (11)	0.0749 (14)	0.2595 (5)	0.183 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.046 (2)	0.050 (3)	0.072 (3)	0.026 (2)	0.020 (2)	0.013 (2)
C2	0.044 (2)	0.052 (3)	0.069 (3)	0.026 (2)	0.018 (2)	0.018 (2)
C3	0.038 (2)	0.064 (3)	0.075 (3)	0.034 (2)	0.020 (2)	0.021 (2)
C4	0.039 (2)	0.047 (2)	0.065 (3)	0.0227 (18)	0.0138 (19)	0.011 (2)
C5	0.048 (2)	0.055 (3)	0.077 (3)	0.030 (2)	0.021 (2)	0.020 (2)
C6	0.063 (3)	0.087 (4)	0.119 (5)	0.049 (3)	0.030 (3)	0.049 (3)
C7	0.052 (3)	0.068 (3)	0.124 (5)	0.030 (2)	0.032 (3)	0.031 (3)
C8	0.043 (2)	0.046 (2)	0.063 (3)	0.0201 (19)	0.009 (2)	0.012 (2)
С9	0.067 (3)	0.088 (4)	0.100 (4)	0.040 (3)	0.033 (3)	0.047 (3)
C10	0.115 (5)	0.124 (6)	0.121 (6)	0.058 (5)	0.035 (4)	0.065 (5)
C11	0.053 (3)	0.057 (3)	0.071 (3)	0.031 (2)	0.021 (2)	0.016 (2)
C12	0.055 (3)	0.040 (2)	0.093 (4)	0.019 (2)	0.015 (2)	0.017 (2)
C13	0.053 (3)	0.045 (3)	0.075 (3)	0.018 (2)	0.017 (2)	0.005 (2)
C14	0.056 (3)	0.041 (2)	0.077 (3)	0.022 (2)	0.018 (2)	0.009 (2)
C15	0.059 (3)	0.046 (3)	0.071 (3)	0.016 (2)	0.019 (2)	0.009 (2)
C16	0.069 (3)	0.042 (2)	0.075 (4)	0.021 (2)	0.019 (3)	0.010 (3)
C17	0.074 (3)	0.061 (3)	0.070 (4)	0.034 (2)	0.016 (3)	0.015 (3)
C18	0.125 (5)	0.067 (3)	0.071 (4)	0.052 (3)	0.011 (3)	-0.001 (3)
C19	0.116 (5)	0.053 (3)	0.076 (4)	0.046 (3)	0.005 (3)	0.000 (3)
C20	0.122 (5)	0.058 (3)	0.087 (4)	0.034 (3)	0.021 (3)	0.014 (3)
C21	0.115 (5)	0.047 (3)	0.070 (4)	0.020 (3)	0.019 (4)	0.009 (3)
C22	0.119 (5)	0.112 (6)	0.093 (5)	0.023 (4)	0.037 (4)	0.022 (4)
C23	0.178 (9)	0.099 (6)	0.083 (6)	-0.012 (6)	0.047 (6)	0.019 (4)
C24	0.174 (9)	0.066 (4)	0.089 (5)	0.023 (5)	0.021 (6)	0.017 (4)
C25	0.142 (6)	0.078 (4)	0.102 (5)	0.056 (4)	0.014 (5)	0.008 (4)
C26	0.133 (6)	0.073 (4)	0.088 (5)	0.051 (4)	0.035 (4)	0.024 (3)
C27	0.032 (2)	0.078 (3)	0.064 (3)	0.020 (2)	0.0151 (19)	0.010 (3)

C28	0.046 (3)	0.109 (4)	0.073 (4)	0.022 (3)	0.020 (3)	0.028 (3)
C29	0.054 (3)	0.142 (7)	0.070 (5)	0.019 (4)	0.019 (3)	0.019 (5)
C30	0.059 (4)	0.161 (9)	0.079 (5)	0.017 (5)	0.012 (3)	-0.018 (5)
C31	0.066 (4)	0.098 (5)	0.105 (6)	0.021 (3)	0.013 (4)	-0.024 (5)
C32	0.054 (3)	0.073 (4)	0.089 (4)	0.026 (3)	0.015 (3)	0.003 (3)
N1	0.044 (2)	0.053 (2)	0.088 (3)	0.0314 (17)	0.0222 (19)	0.021 (2)
N2	0.086 (4)	0.201 (9)	0.078 (5)	0.020 (5)	0.026 (4)	0.042 (6)
01	0.0424 (17)	0.068 (2)	0.078 (2)	0.0295 (15)	0.0182 (14)	0.0267 (17)
O2	0.060 (2)	0.095 (3)	0.100 (3)	0.0494 (19)	0.0328 (18)	0.055 (2)
03	0.065 (2)	0.071 (2)	0.134 (3)	0.0450 (19)	0.039 (2)	0.047 (2)
O4	0.0558 (19)	0.0481 (19)	0.090 (2)	0.0204 (15)	0.0090 (16)	0.0197 (17)
05	0.134 (3)	0.043 (2)	0.095 (3)	0.036 (2)	0.029 (2)	0.0092 (19)
06	0.122 (3)	0.056 (2)	0.076 (2)	0.041 (2)	0.017 (2)	0.0108 (19)
07	0.133 (5)	0.211 (8)	0.117 (5)	0.023 (6)	0.004 (4)	0.086 (6)
08	0.159 (6)	0.289 (10)	0.069 (4)	0.050 (6)	0.022 (3)	0.024 (5)

Geometric parameters (Å, °)

C1—C2	1.343 (5)	C15—H15	0.9300
C1—N1	1.386 (6)	C16—C17	1.376 (7)
C1—C7	1.502 (7)	С16—Н16	0.9300
C2—C11	1.481 (6)	C17—O6	1.350 (6)
С2—С3	1.511 (6)	C17—C18	1.407 (7)
C3—C4	1.507 (6)	C18—C19	1.363 (8)
C3—C27	1.525 (7)	C18—H18	0.9300
С3—Н3	0.9800	С19—Н19	0.9300
C4—C5	1.354 (5)	C20—O6	1.434 (6)
C4—C8	1.454 (6)	C20—C21	1.510 (9)
C5—N1	1.372 (6)	C20—H20A	0.9700
C5—C6	1.501 (6)	C20—H20B	0.9700
С6—Н6А	0.9600	C21—C22	1.355 (9)
С6—Н6В	0.9600	C21—C26	1.369 (9)
С6—Н6С	0.9600	C22—C23	1.423 (12)
С7—Н7А	0.9600	C22—H22	0.9300
С7—Н7В	0.9600	C23—C24	1.341 (13)
С7—Н7С	0.9600	С23—Н23	0.9300
C8—O1	1.209 (4)	C24—C25	1.347 (11)
C8—O2	1.328 (5)	C24—H24	0.9300
С9—О2	1.440 (6)	C25—C26	1.368 (10)
C9—C10	1.468 (8)	С25—Н25	0.9300
С9—Н9А	0.9700	C26—H26	0.9300
С9—Н9В	0.9700	C27—C28	1.383 (7)
C10—H10A	0.9600	C27—C32	1.398 (7)
C10—H10B	0.9600	C28—C29	1.360 (9)
C10—H10C	0.9600	C28—H28	0.9300
C11—O3	1.191 (5)	C29—C30	1.370 (11)
C11—O4	1.337 (5)	C29—N2	1.466 (10)
C12—O4	1.429 (5)	C30—C31	1.382 (11)
C12—C13	1.501 (7)	С30—Н30	0.9300

C12—H12A	0.9700	C31—C32	1.384 (9)
C12—H12B	0.9700	С31—Н31	0.9300
C13—O5	1.211 (5)	С32—Н32	0.9300
C13—C14	1.467 (7)	N1—H1	0.8600
C14—C19	1.381 (7)	N2—O8	1.195 (10)
C14—C15	1.390 (6)	N2—O7	1.203 (11)
C15—C16	1.380 (7)		
C2—C1—N1	117.2 (4)	C17—C16—C15	120.3 (4)
C2—C1—C7	129.1 (4)	С17—С16—Н16	119.9
N1—C1—C7	113.8 (4)	C15—C16—H16	119.9
C1—C2—C11	124.9 (4)	O6—C17—C16	126.6 (4)
C1—C2—C3	119.1 (4)	O6—C17—C18	114.5 (5)
C11—C2—C3	115.9 (3)	C16—C17—C18	118.9 (5)
C4—C3—C2	109.4 (3)	C19—C18—C17	119.6 (5)
C4—C3—C27	113.0 (4)	C19-C18-H18	120.2
C2—C3—C27	111.7 (4)	C17—C18—H18	120.2
С4—С3—Н3	107.5	C18—C19—C14	122.3 (5)
С2—С3—Н3	107.5	С18—С19—Н19	118.9
С27—С3—Н3	107.5	С14—С19—Н19	118.9
C5—C4—C8	125.0 (4)	O6—C20—C21	106.6 (5)
C5—C4—C3	118.7 (4)	O6—C20—H20A	110.4
C8—C4—C3	116.4 (3)	С21—С20—Н20А	110.4
C4—C5—N1	118.0 (4)	O6-C20-H20B	110.4
C4—C5—C6	128.4 (4)	C21—C20—H20B	110.4
N1—C5—C6	113.6 (4)	H20A—C20—H20B	108.6
С5—С6—Н6А	109.5	C22—C21—C26	119.4 (7)
С5—С6—Н6В	109.5	C22—C21—C20	121.4 (7)
H6A—C6—H6B	109.5	C26—C21—C20	119.2 (6)
С5—С6—Н6С	109.5	C21—C22—C23	119.2 (8)
Н6А—С6—Н6С	109.5	C21—C22—H22	120.4
H6B—C6—H6C	109.5	С23—С22—Н22	120.4
C1—C7—H7A	109.5	C24—C23—C22	119.3 (8)
С1—С7—Н7В	109.5	С24—С23—Н23	120.4
H7A—C7—H7B	109.5	С22—С23—Н23	120.4
С1—С7—Н7С	109.5	C23—C24—C25	121.5 (8)
H7A—C7—H7C	109.5	C23—C24—H24	119.3
H7B—C7—H7C	109.5	C25—C24—H24	119.3
O1—C8—O2	121.5 (4)	C24—C25—C26	119.5 (8)
O1—C8—C4	123.3 (4)	С24—С25—Н25	120.3
O2—C8—C4	115.3 (3)	С26—С25—Н25	120.3
O2—C9—C10	107.6 (5)	C25—C26—C21	121.2 (7)
О2—С9—Н9А	110.2	С25—С26—Н26	119.4
С10—С9—Н9А	110.2	C21—C26—H26	119.4
О2—С9—Н9В	110.2	C28—C27—C32	117.5 (5)
С10—С9—Н9В	110.2	C28—C27—C3	119.2 (5)
Н9А—С9—Н9В	108.5	C32—C27—C3	123.3 (4)
С9—С10—Н10А	109.5	C29—C28—C27	121.3 (6)
C9—C10—H10B	109.5	C29—C28—H28	119.4
U10A C10 U10D	109.5	C27—C28—H28	1194

С9—С10—Н10С	109.5	C28—C29—C30	121.6 (7)
H10A-C10-H10C	109.5	C28—C29—N2	120.3 (8)
H10B-C10-H10C	109.5	C30—C29—N2	118.1 (8)
O3—C11—O4	122.4 (4)	C29—C30—C31	118.4 (7)
O3—C11—C2	123.3 (4)	С29—С30—Н30	120.8
O4—C11—C2	114.3 (3)	C31—C30—H30	120.8
O4—C12—C13	110.2 (4)	C30—C31—C32	120.5 (7)
O4—C12—H12A	109.6	C30—C31—H31	119.7
C13—C12—H12A	109.6	С32—С31—Н31	119.7
O4—C12—H12B	109.6	C31—C32—C27	120.6 (6)
C13—C12—H12B	109.6	С31—С32—Н32	119.7
H12A—C12—H12B	108.1	С27—С32—Н32	119.7
O5-C13-C14	122.7 (5)	C5—N1—C1	123.2 (3)
O5-C13-C12	118.8 (4)	C5—N1—H1	118.4
C14—C13—C12	118.5 (4)	C1—N1—H1	118.4
C19—C14—C15	117.6 (4)	O8—N2—O7	123.0 (10)
C19—C14—C13	118.8 (4)	O8—N2—C29	119.9 (11)
C15—C14—C13	123.6 (4)	O7—N2—C29	117.0 (9)
C16—C15—C14	121.3 (5)	C8—O2—C9	118.1 (3)
C16—C15—H15	119.3	C11—O4—C12	114.9 (3)
C14—C15—H15	119.3	C17—O6—C20	117.7 (4)
N1—C1—C2—C11	169.2 (5)	O6—C20—C21—C26	90.2 (8)
C7—C1—C2—C11	-10.9 (10)	C26—C21—C22—C23	1.6 (13)
N1-C1-C2-C3	-12.7 (8)	C20-C21-C22-C23	-178.5 (7)
C7—C1—C2—C3	167.3 (6)	C21—C22—C23—C24	-1.8 (15)
C1—C2—C3—C4	37.5 (7)	C22—C23—C24—C25	0.9 (15)
C11—C2—C3—C4	-144.2 (4)	C23—C24—C25—C26	0.1 (14)
C1—C2—C3—C27	-88.2 (6)	C22-C21-C26-C25	-0.6 (11)
C11—C2—C3—C27	90.2 (5)	C20-C21-C26-C25	179.6 (7)
C2—C3—C4—C5	-34.7 (7)	C24—C25—C26—C21	-0.3 (12)
C27—C3—C4—C5	90.4 (6)	C4—C3—C27—C28	175.7 (4)
C2—C3—C4—C8	145.3 (4)	C2—C3—C27—C28	-60.5 (5)
C27—C3—C4—C8	-89.6 (5)	C4—C3—C27—C32	-5.1 (6)
C8—C4—C5—N1	-172.5 (5)	C2—C3—C27—C32	118.6 (5)
C3—C4—C5—N1	7.5 (8)	C32—C27—C28—C29	-1.5 (8)
C8—C4—C5—C6	8.7 (9)	C3—C27—C28—C29	177.7 (5)
C3—C4—C5—C6	-171.3 (6)	C27—C28—C29—C30	0.7 (10)
C5—C4—C8—O1	177.0 (6)	C27—C28—C29—N2	179.9 (6)
C3—C4—C8—O1	-3.0 (7)	C28-C29-C30-C31	0.2 (11)
C5—C4—C8—O2	-2.5 (8)	N2-C29-C30-C31	-179.0 (7)
C3—C4—C8—O2	177.5 (5)	C29—C30—C31—C32	-0.1 (11)
C1—C2—C11—O3	-179.9 (6)	C30—C31—C32—C27	-0.7 (10)
C3—C2—C11—O3	1.9 (8)	C28—C27—C32—C31	1.5 (8)
C1—C2—C11—O4	-0.6 (8)	C3—C27—C32—C31	-177.6 (6)
C3—C2—C11—O4	-178.8 (5)	C4—C5—N1—C1	22.3 (8)
O4—C12—C13—O5	1.0 (7)	C6—C5—N1—C1	-158.7 (6)
O4—C12—C13—C14	-179.2 (4)	C2—C1—N1—C5	-19.6 (8)
O5—C13—C14—C19	1.0 (9)	C7—C1—N1—C5	160.5 (6)
C12—C13—C14—C19	-178.6 (5)	C28—C29—N2—O7	-3.1 (13)

O5-C13-C14-C15	-177.5 (6)	C30—C29—N2—O7	176.1 (10)
C12-C13-C14-C15	2.8 (8)	C28—C29—N2—O8	176.7 (8)
C19-C14-C15-C16	1.4 (8)	C30—C29—N2—O8	-4.1 (12)
C13-C14-C15-C16	180.0 (5)	01—C8—O2—C9	-3.0 (8)
C14—C15—C16—C17	-2.1 (8)	C4—C8—O2—C9	176.5 (5)
C15-C16-C17-O6	179.8 (6)	C10—C9—O2—C8	-177.6 (7)
C15-C16-C17-C18	1.5 (9)	O3-C11-O4-C12	-19.1 (8)
O6—C17—C18—C19	-178.8 (7)	C2-C11-O4-C12	161.6 (5)
C16-C17-C18-C19	-0.3 (11)	C13—C12—O4—C11	-73.8 (6)
C17-C18-C19-C14	-0.4 (12)	C16—C17—O6—C20	1.9 (10)
C15-C14-C19-C18	-0.2 (10)	C18—C17—O6—C20	-179.8 (7)
C13-C14-C19-C18	-178.8 (7)	C21-C20-O6-C17	-173.0 (6)
O6—C20—C21—C22	-89.7 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···O1 ⁱ	0.86	2.11	2.940 (5)	163
Symmetry codes: (i) $x+1$, y , z .				

Fig. 2